How to host your machine learning model as a REST API endpoint on Python Flask
In this tutorial, we use the best model for predicting HDB resale prices and expose it as an endpoint on Flask. We would have the training endpoint and prediction endpoint separately. To try out the prediction accuracy for yourself, you may go to hdbpricer.com
This is part 2 of a 4-part tutorial
1. Building a good prediction model
2. Hosting the model prediction as an API endpoint on Flask
3. Building a simple VueJS frontend for a users to price their HDBs
4. Deploying the entire full stack application to the internet
The Git repository for the implementation can be found here
My hdbpricer app server
Background
Through part 1 of the tutorial, we found out that K nearest neighbors seemed to yield the best prediction outcome. Hence, we packaged it to be used by a front end application (part 3 of the 4-part tutorial)
Server setup (app.py)
Firstly,
- Import the necessary libraries
- Set up CORS
from flask import Flask, jsonify, request
from flask_cors import CORS
import random
from predict import predictPrice
from train import train
import os # configuration DEBUG = True # instantiate the app app = Flask(__name__) app.config.from_object(__name__) # enable CORS CORS(app, resources={r'/*': {'origins': '*'}})
Here’s an example of what the flask application is storing. A list of HDB dict with the attributes an resale price
HDBs = [ { 'town': 'ANG MO KIO', 'flat_type': '2 ROOM', 'storey_range': '10 TO 12', 'floor_area_sqm': 44.0, 'lease_commence_date': 1979, 'resale_price': 232000.0, }, #town, flat_type,storey_range,floor_area_sqm,lease_commence_date ]
We then set up the routes.
ping: To check if the server is running fine
# sanity check route
@app.route('/ping', methods=['GET'])
def ping_pong():
return jsonify('pong!')
hdbs:
- GET method returns all the hdbs from the list
- POST method receives a payload of HDB information, runs the predict function and then appends the new hdb to the list
@app.route('/hdbs', methods=['GET', 'POST'])def all_hdbs():response_object = {'status': 'success'}if request.method == 'POST':post_data = request.get_json()HDBs.append({'town': post_data.get('town'),'flat_type': post_data.get('flat_type'),'storey_range': post_data.get('storey_range'),'floor_area_sqm': post_data.get('floor_area_sqm'),'lease_commence_date': post_data.get('lease_commence_date'),'resale_price': round(predictPrice( town = post_data.get('town'),flat_type=post_data.get('flat_type'),storey_range=post_data.get('storey_range'),floor_area_sqm=post_data.get('floor_area_sqm'),lease_commence_date=post_data.get('lease_commence_date'))*1.01), # To return from model})response_object['message'] = 'Priced!'else:response_object['hdbs'] = HDBsreturn jsonify(response_object)
train: Runs the training method and returns the score of the latest training. This will only need to be used when we have new datasets to train
@app.route('/train', methods=['GET'])def train_model():response_object = {'status': 'success'}response_object['score'] = train()return jsonify(response_object)
Last but not least, we will need this to be able to run python app.py both locally and on server. (Deploying to server will be covered in part 4 of 4-part tutorial)
Essentially if there is an environment variable for ‘PORT’, this means that the app is getting deployed on a server and will use the correstponding port number. Else it will host on port 5000 in your localhost.
if __name__ == '__main__':port = int(os.getenv('PORT', 5000))print("Starting app on port %d" % port)if(port!=5000):app.run(debug=False, port=port, host='0.0.0.0')else:app.run()
Here’s the full code block for app.py
from flask import Flask, jsonify, requestfrom flask_cors import CORSimport randomfrom predict import predictPricefrom train import trainimport os# configurationDEBUG = True# instantiate the appapp = Flask(__name__)app.config.from_object(__name__)# enable CORSCORS(app, resources={r'/*': {'origins': '*'}})HDBs = [{'town': 'ANG MO KIO','flat_type': '2 ROOM','storey_range': '10 TO 12','floor_area_sqm': 44.0,'lease_commence_date': 1979,'resale_price': 232000.0,},#town, flat_type,storey_range,floor_area_sqm,lease_commence_date]# sanity check route@app.route('/ping', methods=['GET'])def ping_pong():return jsonify('pong!')@app.route('/hdbs', methods=['GET', 'POST'])def all_hdbs():response_object = {'status': 'success'}if request.method == 'POST':post_data = request.get_json()HDBs.append({'town': post_data.get('town'),'flat_type': post_data.get('flat_type'),'storey_range': post_data.get('storey_range'),'floor_area_sqm': post_data.get('floor_area_sqm'),'lease_commence_date': post_data.get('lease_commence_date'),'resale_price': round(predictPrice( town = post_data.get('town'),flat_type=post_data.get('flat_type'),storey_range=post_data.get('storey_range'),floor_area_sqm=post_data.get('floor_area_sqm'),lease_commence_date=post_data.get('lease_commence_date'))*1.01), # To return from model})response_object['message'] = 'Priced!'else:response_object['hdbs'] = HDBsreturn jsonify(response_object)@app.route('/train', methods=['GET'])def train_model():response_object = {'status': 'success'}response_object['score'] = train()return jsonify(response_object)if __name__ == '__main__':port = int(os.getenv('PORT', 5000))print("Starting app on port %d" % port)if(port!=5000):app.run(debug=False, port=port, host='0.0.0.0')else:app.run()
Now, we will move on to the training API.
train.py
Import necessary libraries
import mathfrom collections import defaultdictimport numpy as npfrom numpy import uniqueimport pandas as pdfrom sklearn.preprocessing import StandardScaler, LabelEncoderimport geopyfrom geopy.geocoders import Nominatimfrom geopy.extra.rate_limiter import RateLimiterfrom sklearn.neighbors import KNeighborsRegressorimport pickle
You will see that the code looks extremely similar to the jupyter notebook
Quick recap, here’s what we do
- Read dataset
- Preprocess data
- Geocode the towns
- Encode String data into integers
- Drop columns
- Split data into training and testing
- Scaling
- Train and fit
The additional work done was
1. Saving the Scaler
2. Saving the model
3. Evaluating the saved model
This is so that the model and scaler can be reused by the predict function ( predict.py) later. We use Pickle here, but joblib works fine as well.
def train():#Dataset from https://data.gov.sg/dataset/resale-flat-pricesfile_url = "https://docs.google.com/spreadsheets/d/e/2PACX-1vQ8OfO82KXoRmO0E6c58MdwsOSc8ns5Geme87SiaiqTUrS_hI8u8mYE5KIOfQe4m2m3GGf9En22xuXx/pub?gid=382289391&single=true&output=csv"data = pd.read_csv(file_url)dataframe = data.copy()#let's break date to years, monthsdataframe['date'] = pd.to_datetime(dataframe['month'])dataframe['month'] = dataframe['date'].apply(lambda date:date.month)dataframe['year'] = dataframe['date'].apply(lambda date:date.year)#Get number of years left on lease as a continuous number (ignoring months)dataframe['remaining_lease'] = dataframe['remaining_lease'].apply(lambda remaining_lease:remaining_lease[:2])#Get storey range as a continuous numberdataframe['storey_range'] = dataframe['storey_range'].apply(lambda storey_range:storey_range[:2])#Concat addressdataframe['address'] = dataframe['block'].map(str) + ', ' + dataframe['street_name'].map(str) + ', Singapore''''#Geocode by addresslocator = Nominatim(user_agent="myGeocoder")# 1 - convenient function to delay between geocoding callsgeocode = RateLimiter(locator.geocode, min_delay_seconds=1)# 2- - create location columndataframe['location'] = dataframe['address'].apply(geocode)print("step 2")# 3 - create longitude, laatitude and altitude from location column (returns tuple)dataframe['point'] = dataframe['location'].apply(lambda loc: tuple(loc.point) if loc else None)print("step 3")# 4 - split point column into latitude, longitude and altitude columnsdataframe[['latitude', 'longitude', 'altitude']] = pd.DataFrame(dataframe['point'].tolist(), index=df.index)print("step 4")'''#Geocode by town (Singapore is so small that geocoding by addresses might not make much difference compared to geocoding to town)town = [x for x in dataframe['town'].unique().tolist()if type(x) == str]latitude = []longitude = []for i in range(0, len(town)):# remove things that does not seem usefull heretry:geolocator = Nominatim(user_agent="ny_explorer")loc = geolocator.geocode(town[i])latitude.append(loc.latitude)longitude.append(loc.longitude)#print('The geographical coordinate of location are {}, {}.'.format(loc.latitude, loc.longitude))except:# in the case the geolocator does not work, then add nan element to list# to keep the right sizelatitude.append(np.nan)longitude.append(np.nan)# create a dataframe with the locatio, latitude and longitudedf_ = pd.DataFrame({'town':town,'latitude': latitude,'longitude':longitude})# merge on Restaurant_Location with rest_df to get the columndataframe = dataframe.merge(df_, on='town', how='left')### label encode the categorical values and convert them to numbers'''le = LabelEncoder()dataframe['town']= le.fit_transform(dataframe['town'].astype(str))dataframe['flat_type'] = le.fit_transform(dataframe['flat_type'].astype(str))dataframe['street_name'] = le.fit_transform(dataframe['street_name'].astype(str))#dataframe['storey_range'] = le.fit_transform(dataframe['storey_range'].astype(str))dataframe['flat_model'] = le.fit_transform(dataframe['flat_model'].astype(str))dataframe['block'] = le.fit_transform(dataframe['block'].astype(str))dataframe['address'] = le.fit_transform(dataframe['address'].astype(str))'''townDict = {'ANG MO KIO': 1,'BEDOK': 2,'BISHAN': 3,'BUKIT BATOK': 4,'BUKIT MERAH': 5,'BUKIT PANJANG': 6,'BUKIT TIMAH': 7,'CENTRAL AREA': 8,'CHOA CHU KANG': 9,'CLEMENTI': 10,'GEYLANG': 11,'HOUGANG': 12,'JURONG EAST': 13,'JURONG WEST': 14,'KALLANG/WHAMPOA': 15,'MARINE PARADE': 16,'PASIR RIS': 17,'PUNGGOL': 18,'QUEENSTOWN': 19,'SEMBAWANG': 20,'SENGKANG': 21,'SERANGOON': 22,'TAMPINES': 23,'TOA PAYOH': 24,'WOODLANDS': 25,'YISHUN': 26,}flat_typeDict = {'1 ROOM': 1,'2 ROOM': 2,'3 ROOM': 3,'4 ROOM': 4,'5 ROOM': 5,'EXECUTIVE': 6,'MULTI-GENERATION': 7,}dataframe['town'] = dataframe['town'].replace(townDict, regex=True)dataframe['flat_type'] = dataframe['flat_type'].replace(flat_typeDict, regex=True)# drop some unnecessary columnsdataframe = dataframe.drop('date',axis=1)dataframe = dataframe.drop('block',axis=1)#dataframe = dataframe.drop('lease_commence_date',axis=1)dataframe = dataframe.drop('month',axis=1)dataframe = dataframe.drop('street_name',axis=1)dataframe = dataframe.drop('address',axis=1)dataframe = dataframe.drop('flat_model',axis=1)#dataframe = dataframe.drop('town',axis=1)dataframe = dataframe.drop('year',axis=1)#dataframe = dataframe.drop('latitude',axis=1)dataframe = dataframe.drop('remaining_lease',axis=1)X = dataframe.drop('resale_price',axis =1)y = dataframe['resale_price']X=X.valuesy=y.values#splitting Train and Testfrom sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101)#standardization scaler - fit&transform on train, fit only on tests_scaler = StandardScaler()X_train = s_scaler.fit_transform(X_train.astype(np.float))X_test = s_scaler.transform(X_test.astype(np.float))knn = KNeighborsRegressor(algorithm='brute')knn.fit(X_train,y_train)#save modelfilename = 'hdbknn.sav'scalername = 'scaler.sav'pickle.dump(knn, open(filename, 'wb'))pickle.dump(s_scaler, open(scalername, 'wb'))loaded_model = pickle.load(open(filename, 'rb'))result = loaded_model.score(X_test, y_test)print(result)return result
Without further ado, let’s look at the prediction function.
predict.py
Import necessary libraries
import mathfrom collections import defaultdictimport numpy as npfrom numpy import uniqueimport pandas as pdfrom sklearn.preprocessing import StandardScalerimport geopyfrom geopy.geocoders import Nominatimfrom geopy.extra.rate_limiter import RateLimiterfrom sklearn.neighbors import KNeighborsRegressorimport pickle
Define function to receive inputs from REST API
def predictPrice(town,flat_type,storey_range,floor_area_sqm,lease_commence_date):#town, flat_type,storey_range,floor_area_sqm,lease_commence_dateinput_data = {'town': town,'flat_type': flat_type,'storey_range': storey_range,'floor_area_sqm': floor_area_sqm,'lease_commence_date': lease_commence_date,}
Geocode the town (Future versions of hdbpricer will also be able to geocode exact addresses since it’s literally the same method)
#Geocode by town (Singapore is so small that geocoding by addresses might not make much difference compared to geocoding to town)town = input_data["town"]latitude = 0longitude = 0try:geolocator = Nominatim(user_agent="ny_explorer")loc = geolocator.geocode(town)latitude= loc.latitudelongitude = loc.longitude#print('The geographical coordinate of location are {}, {}.'.format(loc.latitude, loc.longitude))except:# in the case the geolocator does not work, then add nan element# to keep the right sizelatitude = np.nanlongitude = np.naninput_data['latitude'] = latitudeinput_data['longitude'] = longitudeinput_data['storey_range'] = input_data['storey_range'][:2]
Encode String values
townDict = {'ANG MO KIO': 1,'BEDOK': 2,'BISHAN': 3,'BUKIT BATOK': 4,'BUKIT MERAH': 5,'BUKIT PANJANG': 6,'BUKIT TIMAH': 7,'CENTRAL AREA': 8,'CHOA CHU KANG': 9,'CLEMENTI': 10,'GEYLANG': 11,'HOUGANG': 12,'JURONG EAST': 13,'JURONG WEST': 14,'KALLANG/WHAMPOA': 15,'MARINE PARADE': 16,'PASIR RIS': 17,'PUNGGOL': 18,'QUEENSTOWN': 19,'SEMBAWANG': 20,'SENGKANG': 21,'SERANGOON': 22,'TAMPINES': 23,'TOA PAYOH': 24,'WOODLANDS': 25,'YISHUN': 26,}flat_typeDict = {'1 ROOM': 1,'2 ROOM': 2,'3 ROOM': 3,'4 ROOM': 4,'5 ROOM': 5,'EXECUTIVE': 6,'MULTI-GENERATION': 7,}input_data['town'] = townDict[input_data['town']]input_data['flat_type'] = flat_typeDict[input_data['flat_type']]
Convert to dataframe
dataframe = pd.DataFrame.from_records([input_data])
data = dataframe.values
Scaling with our saved scaler. This is important to use a saved scaler because you should not fit your scaler based on new/test data. The scaler was fitted using the training data in train.py
scalername = 'scaler.sav'
s_scaler = pickle.load(open(scalername, 'rb'))
data = s_scaler.transform(data.astype(np.float))
Predict!
filename = 'hdbknn.sav'
loaded_model = pickle.load(open(filename, 'rb'))
result = loaded_model.predict(data)
#print(result)
return result[0]
The full predict.py file
import math#import tensorflow as tffrom collections import defaultdictimport numpy as npfrom numpy import uniqueimport pandas as pdfrom sklearn.preprocessing import StandardScaler#from tensorflow import keras#from tensorflow.keras import layers#import geopandas as gpdimport geopyfrom geopy.geocoders import Nominatimfrom geopy.extra.rate_limiter import RateLimiterfrom sklearn.neighbors import KNeighborsRegressorimport pickledef predictPrice(town,flat_type,storey_range,floor_area_sqm,lease_commence_date):#town, flat_type,storey_range,floor_area_sqm,lease_commence_dateinput_data = {'town': town,'flat_type': flat_type,'storey_range': storey_range,'floor_area_sqm': floor_area_sqm,'lease_commence_date': lease_commence_date,}#Geocode by town (Singapore is so small that geocoding by addresses might not make much difference compared to geocoding to town)town = input_data["town"]latitude = 0longitude = 0try:geolocator = Nominatim(user_agent="ny_explorer")loc = geolocator.geocode(town)latitude= loc.latitudelongitude = loc.longitude#print('The geographical coordinate of location are {}, {}.'.format(loc.latitude, loc.longitude))except:# in the case the geolocator does not work, then add nan element# to keep the right sizelatitude = np.nanlongitude = np.naninput_data['latitude'] = latitudeinput_data['longitude'] = longitudeinput_data['storey_range'] = input_data['storey_range'][:2]townDict = {'ANG MO KIO': 1,'BEDOK': 2,'BISHAN': 3,'BUKIT BATOK': 4,'BUKIT MERAH': 5,'BUKIT PANJANG': 6,'BUKIT TIMAH': 7,'CENTRAL AREA': 8,'CHOA CHU KANG': 9,'CLEMENTI': 10,'GEYLANG': 11,'HOUGANG': 12,'JURONG EAST': 13,'JURONG WEST': 14,'KALLANG/WHAMPOA': 15,'MARINE PARADE': 16,'PASIR RIS': 17,'PUNGGOL': 18,'QUEENSTOWN': 19,'SEMBAWANG': 20,'SENGKANG': 21,'SERANGOON': 22,'TAMPINES': 23,'TOA PAYOH': 24,'WOODLANDS': 25,'YISHUN': 26,}flat_typeDict = {'1 ROOM': 1,'2 ROOM': 2,'3 ROOM': 3,'4 ROOM': 4,'5 ROOM': 5,'EXECUTIVE': 6,'MULTI-GENERATION': 7,}input_data['town'] = townDict[input_data['town']]input_data['flat_type'] = flat_typeDict[input_data['flat_type']]dataframe = pd.DataFrame.from_records([input_data])data = dataframe.valuesscalername = 'scaler.sav's_scaler = pickle.load(open(scalername, 'rb'))data = s_scaler.transform(data.astype(np.float))#print(data)filename = 'hdbknn.sav'loaded_model = pickle.load(open(filename, 'rb'))result = loaded_model.predict(data)#print(result)return result[0]
Running the server
Depending on whether you use Conda or just Vanilla Python
Install your dependencies (pip or conda both works fine)
pip install -r requirements.txt
Run Server
- Python
env\Scripts\activate
(env) python server/app.py
- Conda
conda activate modelenv
python server/app.py
Conclusion
That’s all for how to host your machine learning models, training / prediction models via a REST API using python’s Flask library. Some inspiration was taken from here. In our next tutorial, you may look forward to learning about building a front end application using VueJS!
Side note — This is not a production ready implementation, it is not recommended to do a flask “python app.py” for real production use cases 🙂
Originally published at http://royleekiat.com on October 30, 2020.